Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 15(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37717171

RESUMO

Although asexual lineages evolved from sexual lineages in many different taxa, the genetics of sex loss remains poorly understood. We addressed this issue in the pea aphid Acyrthosiphon pisum, whose natural populations encompass lineages performing cyclical parthenogenesis (CP) and producing one sexual generation per year, as well as obligate parthenogenetic (OP) lineages that can no longer produce sexual females but can still produce males. An SNP-based, whole-genome scan of CP and OP populations sequenced in pools (103 individuals from 6 populations) revealed that an X-linked region is associated with the variation in reproductive mode. This 840-kb region is highly divergent between CP and OP populations (FST = 34.9%), with >2,000 SNPs or short Indels showing a high degree of association with the phenotypic trait. In OP populations specifically, this region also shows reduced diversity and Tajima's D, consistent with the OP phenotype being a derived trait in aphids. Interestingly, the low genetic differentiation between CP and OP populations at the rest of the genome (FST = 2.5%) suggests gene flow between them. Males from OP lineages thus likely transmit their op allele to new genomic backgrounds. These genetic exchanges, combined with the selection of the OP and CP reproductive modes under different climates, probably contribute to the long-term persistence of the cp and op alleles.


Assuntos
Afídeos , Humanos , Masculino , Animais , Feminino , Afídeos/genética , Pisum sativum , Variação Genética , Partenogênese/genética , Genômica , Reprodução Assexuada/genética
2.
PLoS Biol ; 20(12): e3001914, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36538502

RESUMO

Hybridization is frequent in the wild but it is unclear when admixture events lead to predictable outcomes and if so, at what timescale. We show that selection led to correlated sorting of genetic variation rapidly after admixture in 3 hybrid Formica aquilonia × F. polyctena ant populations. Removal of ancestry from the species with the lowest effective population size happened in all populations, consistent with purging of deleterious load. This process was modulated by recombination rate variation and the density of functional sites. Moreover, haplotypes with signatures of positive selection in either species were more likely to fix in hybrids. These mechanisms led to mosaic genomes with comparable ancestry proportions. Our work demonstrates predictable evolution over short timescales after admixture in nature.


Assuntos
Formigas , Genética Populacional , Animais , Formigas/genética , Genoma/genética , Hibridização Genética , Evolução Molecular
3.
Mol Ecol ; 31(12): 3416-3431, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35460311

RESUMO

The application of demographic history modelling and inference to the study of divergence between species has become a cornerstone of speciation genomics. Speciation histories are usually reconstructed by analysing single populations from each species, assuming that the inferred population history represents the actual speciation history. However, this assumption may not be met when species diverge with gene flow, for example, when secondary contact may be confined to specific geographic regions. Here, we tested whether divergence histories inferred from heterospecific populations may vary depending on their geographic locations, using the two wood ant species Formica polyctena and F. aquilonia. We performed whole-genome resequencing of 20 individuals sampled in multiple locations across the European ranges of both species. Then, we reconstructed the histories of distinct heterospecific population pairs using a coalescent-based approach. Our analyses always supported a scenario of divergence with gene flow, suggesting that divergence started in the Pleistocene (c. 500 kya) and occurred with continuous asymmetrical gene flow from F. aquilonia to F. polyctena until a recent time, when migration became negligible (2-19 kya). However, we found support for contemporary gene flow in a sympatric pair from Finland, where the species hybridise, but no signature of recent bidirectional gene flow elsewhere. Overall, our results suggest that divergence histories reconstructed from a few individuals may be applicable at the species level. Nonetheless, the geographical context of populations chosen to represent their species should be taken into account, as it may affect estimates of migration rates between species when gene flow is spatially heterogeneous.


Assuntos
Formigas , Fluxo Gênico , Animais , Formigas/genética , Especiação Genética , Genoma , Humanos , Simpatria
4.
J Hered ; 113(3): 353-359, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35394540

RESUMO

Formica red wood ants are a keystone species of boreal forest ecosystems and an emerging model system in the study of speciation and hybridization. Here, we performed a standard DNA extraction from a single, field-collected Formica aquilonia × Formica polyctena haploid male and assembled its genome using ~60× of PacBio long reads. After polishing and contaminant removal, the final assembly was 272 Mb (4687 contigs, N50 = 1.16 Mb). Our reference genome contains 98.5% of the core Hymenopteran BUSCOs and was pseudo-scaffolded using the assembly of a related species, F. selysi (28 scaffolds, N50 = 8.49 Mb). Around one-third of the genome consists of repeats, and 17 426 gene models were annotated using both protein and RNAseq data (97.4% BUSCO completeness). This resource is of comparable quality to the few other single individual insect genomes assembled to date and paves the way to genomic studies of admixture in natural populations and comparative genomic approaches in Formica wood ants.


Assuntos
Formigas , Animais , Formigas/genética , Ecossistema , Genoma de Inseto , Genômica , Haploidia , Masculino
5.
Am Nat ; 198(2): 278-294, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34260873

RESUMO

AbstractGenetic variability is essential for adaptation and could be acquired via hybridization with a closely related lineage. We use ants to investigate thermal adaptation and the link between temperature and genetic variation arising from hybridization. We test for differences in cold and heat tolerance between Finnish Formica polyctena and Formica aquilonia wood ants and their naturally occurring hybrids. Using workers, we find that the parental individuals differ in both cold and heat tolerances and express thermal limits that reflect their global distributions. Hybrids, however, cannot combine thermal tolerance of parental species as they have the same heat tolerance as F. polyctena but not the same cold tolerance as F. aquilonia. We then focus on a single hybrid population to investigate the relationship between temperature variation and genetic variation across 16 years using reproductive individuals. On the basis of the thermal tolerance results, we expected the frequency of putative F. polyctena alleles to increase in warm years and F. aquilonia alleles to increase in cold years. We find support for this in hybrid males but not in hybrid females. These results contribute to understanding the outcomes of hybridization, which may be sex specific or depend on the environment. Furthermore, genetic variability resulting from hybridization could help hybrid wood ants cope with changing thermal conditions.


Assuntos
Formigas , Termotolerância , Aclimatação , Animais , Formigas/genética , Feminino , Hibridização Genética , Masculino , Temperatura
6.
Mol Ecol ; 29(20): 3988-3999, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32854139

RESUMO

Speciation underlies the generation of novel biodiversity. Yet, there is much to learn about how natural selection shapes genomes during speciation. Selection is assumed to act against gene flow at barrier loci, promoting reproductive isolation. However, evidence for gene flow and selection is often indirect and we know very little about the temporal stability of barrier loci. Here we utilize haplodiploidy to identify candidate male barrier loci in hybrids between two wood ant species. As ant males are haploid, they are expected to reveal recessive barrier loci, which can be masked in diploid females if heterozygous. We then test for barrier stability in a sample collected 10 years later and use survival analysis to provide a direct measure of natural selection acting on candidate male barrier loci. We find multiple candidate male barrier loci scattered throughout the genome. Surprisingly, a proportion of them are not stable after 10 years, natural selection apparently switching from acting against to favouring introgression in the later sample. Instability of the barrier effect and natural selection for introgressed alleles could be due to environment-dependent selection, emphasizing the need to consider temporal variation in the strength of natural selection and the stability of the barrier effect at putative barrier loci in future speciation work.


Assuntos
Formigas , Animais , Formigas/genética , Feminino , Fluxo Gênico , Especiação Genética , Genética Populacional , Masculino , Isolamento Reprodutivo , Seleção Genética
7.
Genome Biol Evol ; 12(3): 151-159, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159748

RESUMO

Evolve and resequencing (E&R) studies investigate the genomic responses of adaptation during experimental evolution. Because replicate populations evolve in the same controlled environment, consistent responses to selection across replicates are frequently used to identify reliable candidate regions that underlie adaptation to a new environment. However, recent work demonstrated that selection signatures can be restricted to one or a few replicate(s) only. These selection signatures frequently have weak statistical support, and given the difficulties of functional validation, additional evidence is needed before considering them as candidates for functional analysis. Here, we introduce an experimental procedure to validate candidate loci with weak or replicate-specific selection signature(s). Crossing an evolved population from a primary E&R experiment to the ancestral founder population reduces the frequency of candidate alleles that have reached a high frequency. We hypothesize that genuine selection targets will experience a repeatable frequency increase after the mixing with the ancestral founders if they are exposed to the same environment (secondary E&R experiment). Using this approach, we successfully validate two overlapping selection targets, which showed a mutually exclusive selection signature in a primary E&R experiment of Drosophila simulans adapting to a novel temperature regime. We conclude that secondary E&R experiments provide a reliable confirmation of selection signatures that either are not replicated or show only a low statistical significance in a primary E&R experiment unless epistatic interactions predominate. Such experiments are particularly helpful to prioritize candidate loci for time-consuming functional follow-up investigations.


Assuntos
Evolução Molecular , Seleção Genética , Animais , Drosophila simulans/genética , Feminino , Genômica , Temperatura Alta , Fenótipo , Polimorfismo de Nucleotídeo Único
8.
Trends Ecol Evol ; 35(1): 34-42, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31703819

RESUMO

Hybridization has broad evolutionary consequences, from fueling or counteracting speciation to facilitating adaptation to novel environments. Hybridization and subsequent introgression appear widespread along the tree of life. However, our understanding of how distinct evolutionary forces shape admixed genomes and the fate of introgressed genetic variants remains scarce. Most admixture research in animals has focused on diploid organisms. We propose that haplodiploid organisms can help resolve open questions about the genomic consequences of hybridization in natural populations. The ploidy difference between haploid males and diploid females, the availability of genome-wide male haplotypes, and ongoing cases of admixture make haplodiploid organisms promising models to improve our knowledge with regards to the evolution of hybrid genomes.


Assuntos
Diploide , Hibridização Genética , Animais , Feminino , Genômica , Haploidia , Masculino
9.
Mol Ecol ; 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30010213

RESUMO

Identifying the genomic bases of adaptation to novel environments is a long-term objective in evolutionary biology. Because genetic differentiation is expected to increase between locally adapted populations at the genes targeted by selection, scanning the genome for elevated levels of differentiation is a first step towards deciphering the genomic architecture underlying adaptive divergence. The pea aphid Acyrthosiphon pisum is a model of choice to address this question, as it forms a large complex of plant-specialized races and cryptic species, resulting from recent adaptive radiation. Here, we characterized genomewide polymorphisms in three pea aphid races specialized on alfalfa, clover and pea crops, respectively, which we sequenced in pools (poolseq). Using a model-based approach that explicitly accounts for selection, we identified 392 genomic hotspots of differentiation spanning 47.3 Mb and 2,484 genes (respectively, 9.12% of the genome size and 8.10% of its genes). Most of these highly differentiated regions were located on the autosomes, and overall differentiation was weaker on the X chromosome. Within these hotspots, high levels of absolute divergence between races suggest that these regions experienced less gene flow than the rest of the genome, most likely by contributing to reproductive isolation. Moreover, population-specific analyses showed evidence of selection in every host race, depending on the hotspot considered. These hotspots were significantly enriched for candidate gene categories that control host-plant selection and use. These genes encode 48 salivary proteins, 14 gustatory receptors, 10 odorant receptors, five P450 cytochromes and one chemosensory protein, which represent promising candidates for the genetic basis of host-plant specialization and ecological isolation in the pea aphid complex. Altogether, our findings open new research directions towards functional studies, for validating the role of these genes on adaptive phenotypes.

10.
Sci Rep ; 8(1): 4469, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535355

RESUMO

Fecundity is probably the most frequently studied fitness component in Drosophila. Nevertheless, currently used methods to measure fecundity are not well-suited for large-scale experiments, with many populations being assayed in parallel. Here we present a standardized pipeline to measure fecundity in many Drosophila population samples with substantially reduced hand on times. Using a high-contrast medium for egg laying, we developed a Java plug-in for ImageJ to quantify the number of eggs by image processing. We show that our method is fast and provides reliable egg counts.


Assuntos
Drosophila melanogaster/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Animais , Feminino , Fertilidade , Oviposição
11.
Genome Biol Evol ; 10(2): 507-520, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29360959

RESUMO

The faster evolution of X chromosomes has been documented in several species, and results from the increased efficiency of selection on recessive alleles in hemizygous males and/or from increased drift due to the smaller effective population size of X chromosomes. Aphids are excellent models for evaluating the importance of selection in faster-X evolution because their peculiar life cycle and unusual inheritance of sex chromosomes should generally lead to equivalent effective population sizes for X and autosomes. Because we lack a high-density genetic map for the pea aphid, whose complete genome has been sequenced, we first assigned its entire genome to the X or autosomes based on ratios of sequencing depth in males (X0) to females (XX). Then, we computed nonsynonymous to synonymous substitutions ratios (dN/dS) for the pea aphid gene set and found faster evolution of X-linked genes. Our analyses of substitution rates, together with polymorphism and expression data, showed that relaxed selection is likely to be the greatest contributor to faster-X because a large fraction of X-linked genes are expressed at low rates and thus escape selection. Yet, a minor role for positive selection is also suggested by the difference between substitution rates for X and autosomes for male-biased genes (but not for asexual female-biased genes) and by lower Tajima's D for X-linked compared with autosomal genes with highly male-biased expression patterns. This study highlights the relevance of organisms displaying alternative chromosomal inheritance to the understanding of forces shaping genome evolution.


Assuntos
Afídeos/genética , Cromossomos de Insetos , Evolução Molecular , Cromossomo X/genética , Animais , Afídeos/fisiologia , Evolução Biológica , Feminino , Perfilação da Expressão Gênica , Genes Ligados ao Cromossomo X , Deriva Genética , Genoma de Inseto , Masculino , Polimorfismo Genético , Reprodução , Reprodução Assexuada , Cromossomos Sexuais/genética
12.
Ecol Evol ; 6(20): 7169-7175, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27895897

RESUMO

Experimental evolution is a powerful tool to study adaptation under controlled conditions. Laboratory natural selection experiments mimic adaptation in the wild with better-adapted genotypes having more offspring. Because the selected traits are frequently not known, adaptation is typically measured as fitness increase by comparing evolved populations against an unselected reference population maintained in a laboratory environment. With adaptation to the laboratory conditions and genetic drift, however, it is not clear to what extent such comparisons provide unbiased estimates of adaptation. Alternatively, ancestral variation could be preserved in isofemale lines that can be combined to reconstitute the ancestral population. Here, we assess the impact of selection on alleles segregating in newly established Drosophila isofemale lines. We reconstituted two populations from isofemale lines and compared them to two original ancestral populations (AP) founded from the same lines shortly after collection. No significant allele frequency changes could be detected between both AP and simulations showed that drift had a low impact compared to Pool-Seq-associated sampling effects. We conclude that laboratory selection on segregating variation in isofemale lines is too weak to have detectable effects, which validates ancestral population reconstitution from isofemale lines as an unbiased approach for measuring adaptation in evolved populations.

13.
G3 (Bethesda) ; 6(11): 3507-3515, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27613752

RESUMO

The cost-effectiveness of sequencing pools of individuals (Pool-Seq) provides the basis for the popularity and widespread use of this method for many research questions, ranging from unraveling the genetic basis of complex traits, to the clonal evolution of cancer cells. Because the accuracy of Pool-Seq could be affected by many potential sources of error, several studies have determined, for example, the influence of sequencing technology, the library preparation protocol, and mapping parameters. Nevertheless, the impact of the mapping tools has not yet been evaluated. Using simulated and real Pool-Seq data, we demonstrate a substantial impact of the mapping tools, leading to characteristic false positives in genome-wide scans. The problem of false positives was particularly pronounced when data with different read lengths and insert sizes were compared. Out of 14 evaluated algorithms novoalign, bwa mem and clc4 are most suitable for mapping Pool-Seq data. Nevertheless, no single algorithm is sufficient for avoiding all false positives. We show that the intersection of the results of two mapping algorithms provides a simple, yet effective, strategy to eliminate false positives. We propose that the implementation of a consistent Pool-Seq bioinformatics pipeline, building on the recommendations of this study, can substantially increase the reliability of Pool-Seq results, in particular when libraries generated with different protocols are being compared.

14.
Brief Funct Genomics ; 14(6): 413-23, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25846754

RESUMO

Herbivorous insects represent the most species-rich lineages of metazoans. The high rate of diversification in herbivorous insects is thought to result from their specialization to distinct host-plants, which creates conditions favorable for the build-up of reproductive isolation and speciation. These conditions rely on constraints against the optimal use of a wide range of plant species, as each must constitute a viable food resource, oviposition site and mating site for an insect. Utilization of plants involves many essential traits of herbivorous insects, as they locate and select their hosts, overcome their defenses and acquire nutrients while avoiding intoxication. Although advances in understanding insect-plant molecular interactions have been limited by the complexity of insect traits involved in host use and the lack of genomic resources and functional tools, recent studies at the molecular level, combined with large-scale genomics studies at population and species levels, are revealing the genetic underpinning of plant specialization and adaptive divergence in non-model insect herbivores. Here, we review the recent advances in the genomics of plant adaptation in hemipterans and lepidopterans, two major insect orders, each of which includes a large number of crop pests. We focus on how genomics and post-genomics have improved our understanding of the mechanisms involved in insect-plant interactions by reviewing recent molecular discoveries in sensing, feeding, digesting and detoxifying strategies. We also present the outcomes of large-scale genomics approaches aimed at identifying loci potentially involved in plant adaptation in these insects.


Assuntos
Adaptação Fisiológica/genética , Genômica/métodos , Herbivoria/genética , Interações Hospedeiro-Parasita/fisiologia , Insetos/fisiologia , Plantas/parasitologia , Animais , Plantas/genética
15.
PLoS Genet ; 10(12): e1004838, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25473828

RESUMO

Although evolutionary transitions from sexual to asexual reproduction are frequent in eukaryotes, the genetic bases of such shifts toward asexuality remain largely unknown. We addressed this issue in an aphid species where both sexual and obligate asexual lineages coexist in natural populations. These sexual and asexual lineages may occasionally interbreed because some asexual lineages maintain a residual production of males potentially able to mate with the females produced by sexual lineages. Hence, this species is an ideal model to study the genetic basis of the loss of sexual reproduction with quantitative genetic and population genomic approaches. Our analysis of the co-segregation of ∼ 300 molecular markers and reproductive phenotype in experimental crosses pinpointed an X-linked region controlling obligate asexuality, this state of character being recessive. A population genetic analysis (>400-marker genome scan) on wild sexual and asexual genotypes from geographically distant populations under divergent selection for reproductive strategies detected a strong signature of divergent selection in the genomic region identified by the experimental crosses. These population genetic data confirm the implication of the candidate region in the control of reproductive mode in wild populations originating from 700 km apart. Patterns of genetic differentiation along chromosomes suggest bidirectional gene flow between populations with distinct reproductive modes, supporting contagious asexuality as a prevailing route to permanent parthenogenesis in pea aphids. This genetic system provides new insights into the mechanisms of coexistence of sexual and asexual aphid lineages.


Assuntos
Afídeos/genética , Transferência Genética Horizontal , Pisum sativum/parasitologia , Reprodução Assexuada/genética , Animais , Afídeos/fisiologia , Mapeamento Cromossômico , Cruzamentos Genéticos , Feminino , Genética Populacional , Masculino , Partenogênese/genética , Locos de Características Quantitativas , Reprodução/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA